351 research outputs found

    An interpretability framework for Similar case matching

    Full text link
    Similar Case Matching (SCM) plays a pivotal role in the legal system by facilitating the efficient identification of similar cases for legal professionals. While previous research has primarily concentrated on enhancing the performance of SCM models, the aspect of interpretability has been neglected. To bridge the gap, this study proposes an integrated pipeline framework for interpretable SCM. The framework comprises four modules: judicial feature sentence identification, case matching, feature sentence alignment, and conflict resolution. In contrast to current SCM methods, our framework first extracts feature sentences within a legal case that contain essential information. Then it conducts case matching based on these extracted features. Subsequently, our framework aligns the corresponding sentences in two legal cases to provide evidence of similarity. In instances where the results of case matching and feature sentence alignment exhibit conflicts, the conflict resolution module resolves these inconsistencies. The experimental results show the effectiveness of our proposed framework, establishing a new benchmark for interpretable SCM

    Implicit Identity Leakage: The Stumbling Block to Improving Deepfake Detection Generalization

    Full text link
    In this paper, we analyse the generalization ability of binary classifiers for the task of deepfake detection. We find that the stumbling block to their generalization is caused by the unexpected learned identity representation on images. Termed as the Implicit Identity Leakage, this phenomenon has been qualitatively and quantitatively verified among various DNNs. Furthermore, based on such understanding, we propose a simple yet effective method named the ID-unaware Deepfake Detection Model to reduce the influence of this phenomenon. Extensive experimental results demonstrate that our method outperforms the state-of-the-art in both in-dataset and cross-dataset evaluation. The code is available at https://github.com/megvii-research/CADDM.Comment: Accepted by CVPR 202

    Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis

    Full text link
    Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT). In this paper, we systematically investigate the advantages and challenges of LLMs for MMT by answering two questions: 1) How well do LLMs perform in translating a massive number of languages? 2) Which factors affect LLMs' performance in translation? We evaluate popular LLMs, including XGLM, OPT, BLOOMZ, and ChatGPT, on 102 languages. Our empirical results show that even the best model ChatGPT still lags behind the supervised baseline NLLB in 83.33% of translation directions. Through further analysis, we discover that LLMs exhibit new working patterns when used for MMT. First, prompt semantics can surprisingly be ignored when given in-context exemplars, where LLMs still show strong performance even with unreasonable prompts. Second, cross-lingual exemplars can provide better task instruction for low-resource translation than exemplars in the same language pairs. Third, we observe the overestimated performance of BLOOMZ on dataset Flores-101, indicating the potential risk when using public datasets for evaluation

    Extrapolating Large Language Models to Non-English by Aligning Languages

    Full text link
    Existing large language models show disparate capability across different languages, due to the imbalance in the training data. Their performances on English tasks are often stronger than on tasks of other languages. In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages. We start from targeting individual languages by performing cross-lingual instruction-tuning (CoIT) on LLaMA, i.e. tuning it with translation task data and cross-lingual general task data to obtain cross-lingual models (x-LLaMAs), and formulate underlying scaling laws to investigate the advantages of using scalable translation data. Then we perform multilingual instruction-tuning (MuIT) with mixed resources to build multilingual m-LLaMA. We also illustrate how we leverage the scaling laws to optimize data allocation in a resource-constrained setting. Experiment results on cross-lingual benchmarks XQUAD and MLQA show that x-LLaMAs surpass the English instruction-tuned counterpart (Alpaca) by an average of 27.83% across six non-English languages. Evaluation results on translation dataset Flores-101 show that x-LLaMAs outperform previous LLaMA-based models by an average of 18.89%. Encouragingly, m-LLaMA achieves comparable performance to x-LLaMAs on individual languages and demonstrates the ability to follow multilingual instructions. Further analysis on response content and representation space reveals the alignment of the multilingual semantic space within the middle layers of m-LLaMA
    • …
    corecore